Section 1: Cover Sheet

Final Report

Period of Performance: 7/1/07 – 11/30/07

Principal Investigator: Dr. Suvrajeet Sen

Affiliation: The Ohio State University

Address: Industrial and Systems Engineering

Baker Systems Engineering Bldg

1971 Neil Avenue, Columbus, OH 43210

Award Number: FA9550-07-1-0447

Project Title: Decomposition Algorithms for Very Large Scale Stochastic

Mixed-Integer Programs

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 7/1/07 - 11/30/07 Final Report 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER **5b. GRANT NUMBER** Decomposition Algorithms for Very Large Scale Stochastic Mixed-Integer Programs FA9550-07-1-0447 **5c. PROGRAM ELEMENT NUMBER** 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER Dr. Suvrajeet Sen 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER The Ohio State University **Industrial and Systems Engineering** Baker Systems Engineering Bldg 1971 Neil Avenue, Columbus, OH 43210 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) **AFOSR** Air Force Office of Scientific Research 875 North Randolph Street, 4036 11. SPONSOR/MONITOR'S REPORT Arlington, VA 22203 NUMBER(S) AFRL-SR-AR-TR-08-0275 12. DISTRIBUTION / AVAILABILITY STATEMENT Distribution A: Approved for Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT The objectives of this project were to explore decomposition algorithms that solve optimization models under uncertainty. In order to accommodate a variety of future scenarios, our algorithms are designed to address large scale models. The main accomplishments of the project can be summarized as follows. design and evaluate decomposition methods for stochastic mixed-integer programming (SMIP) problems (Yuan and Sen [2008]) accelerate stochastic decomposition (SD) as a prelude to using SD for SMIP as well as a multi-stage version of SD (Sen et al [2007], Zhou and Sen [2008]). develop a theory for parametric analysis of mixed-integer programs, and provide economically justifiable estimates of shadow prices from mixed-integer linear programming models (Sen and Genc [2008])

17. LIMITATION

OF ABSTRACT

18. NUMBER

code)

OF PAGES

15. SUBJECT TERMS

a. REPORT

none

16. SECURITY CLASSIFICATION OF:

b. ABSTRACT

none

c. THIS PAGE

none

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area

Section 2: Objectives

The objectives of this project were to explore decomposition algorithms that solve optimization models under uncertainty. In order to accommodate a variety of future scenarios, our algorithms are designed to address large scale models. The main accomplishments of the project can be summarized as follows.

- design and evaluate decomposition methods for stochastic mixed-integer programming (SMIP) problems (Yuan and Sen [2008])
- accelerate stochastic decomposition (SD) as a prelude to using SD for SMIP as well as a multi-stage version of SD (Sen et al [2007], Zhou and Sen [2008]).
- develop a theory for parametric analysis of mixed-integer programs, and provide economically justifiable estimates of shadow prices from mixed-integer linear programming models (Sen and Genc [2008])

The first two bullets relate to stochastic programming, whereas the last bullet addresses one of the long-standing open questions in discrete optimization, namely, parametric analysis in MILP models. This paper (listed as [1]) is likely to have a long term impact on a variety of fields including discrete optimization, operations research, and computational economics.

Section 3: Accomplishments / New Findings: Research Highlights and Relevance to the Air Force Mission

This section presents the principal research accomplishments of this project. It is organized into three main sub-sections, each representing a paper that has been submitted for publication. These new nuggets of knowledge cover a wide array of discrete optimization research, ranging from new theory, algorithms, and computational experiments. *Results that are of particular relevance to the Air Force are highlighted* ¹.

3.1 Stochastic Mixed-Integer Programming Algorithms

Stochastic Mixed Integer Programs (SMIP) are recognized as one of the most formidable classes of mathematical programming problems. Not only are there significant challenges due to potentially large number of scenarios, but, SMIP with integers in the second stage give rise to a non-convex and discontinuous recourse function that may be difficult to optimize. Ahmed et al [2004] provide an illustration of how the presence of integer variables in the second stage leads to extremely complicated (non-convex and discontinuous) recourse functions. Over the past few years, there have been significant

In this section, when a reader encounters one or more sentences in *italics*, he/she should interpret the content as being directly relevant to the Air Force and its Technological Challenges.

advances in the design of algorithms for solving SMIP problems (Sen [2005] for a survey). However, computational implementations, and results for large scale problems have been slow in coming. Some exceptions to this comment are papers by Alonso-Ayuso et al [2003], and Ntaimo and Sen [2006]. In the former paper, the authors present a branch-and-fix algorithm which they use to solve a supply chain planning problem, whereas the latter presents a computational comparison using supply chain as well as large scale stochastic server location problems. Research funded through the current grant presents new computational approaches (Yuan and Sen [2008]) for decompositionbased branch-and-cut method (D²-BAC, Sen and Sherali [2006]). computational tools developed by Yuan and Sen [2008] (submitted to INFORMS Journal on Computing) include a streamlined cut generation procedure which itself can be interpreted as a stochastic linear program to choose cut D² coefficients that are effective for a variety of second stage scenarios. In addition, our approach overcomes the need to solve certain linear programs that convexify the value function approximations. These enhancements yield some of the fastest solution times reported on server location problems, with speed-ups averaging a factor of about 2. As a result of such speed-ups, a collaborative DARPA project between AT&T and Telecordia is planning to implement these tools for a new generation of design tools for communications networks.

3.2 Accelerating Stochastic Decomposition

Since stochastic linear programming forms an integral part of SMIP as well as multistage decision-making under uncertainty, we have studied methods that accelerate the stochastic decomposition (SD) algorithm. Specifically, we study two issues: a) are there any conditions under which the regularized version of SD generates a unique solution? and b) is there a way to modify the SD algorithm so that a user can trade-off solution times with solution quality? The second issue addresses the scalability of SD for very large scale problems for which computational resources may be limited and the user may be willing to accept solutions that are "nearly optimal". These issues become critical in the solution of SMIP problems where a large number of stochastic linear programming approximations may be necessary. The same considerations arise in the solution of multi-stage stochastic linear programs in which the value function may be approximated by re-sampling previously observed scenarios (as in particle filtering). In Sen et al [2008] (submitted to Computers and Operations Research), we show that by using bootstrapping (re-sampling) the regularized SD algorithm can be accelerated without significant loss of optimality. Another paper which applies these ideas to multi-stage stochastic linear programming is currently under preparation for Mathematical Programming (Zhou and Sen [2008]).

3.3: Parametric Analysis for MILP

One of the more important open problems in trade-off analysis deals with pricing integral activities or discrete decisions (as well as continuous decisions). This is vital for cost-effective programs in which large fixed-costs play a key role. One may model these choices using mixed-integer linear programming (MILP), and pricing these activities rely on shadow prices for MILP.

It is well known that in general MILP problems present duality gaps and dual variables (as part of the price system) are not unique and not as conveniently interpreted. These issues have been visited for almost fifty years starting with Gomory and Baumol (1960) and subsequently by a number of other authors; however, these issues remained unresolved. Yet, shadow prices continue to play a prominent role in economic theory and practice. For instance, starting in 2008, economists for the British government have agreed to a certain shadow price schedule for pricing carbon emissions in evaluating new projects until the year 2050². Without access to tools that provide justifiable estimates of shadow prices, the social value of such programs will remain questionable.

Research associated with this project (Sen and Genc [2008]) provides an important step in allocating charges of indivisible goods, and moreover, characterizes shadow prices for resources in 0-1 MILP problems. In particular we address the following question: Is it possible to prescribe shadow prices that are unique, and recover the total cost of inputs, even when the underlying model includes indivisibilities that are modeled using integer variables? Our approach is guided by two ideas:

- a) We propose a new measure of two-sided shadow prices for binary MILP problems in which the optimal objective value function is both non-convex and discontinuous. This measure also generalizes the two-sided shadow prices used in the context of linear programming (LP) (Gal (1997)).
- b) Balas (1979) (see also Sherali and Adams (1990)) shows that for 0-1 MILP problems, the convex hull of feasible points can be generated by using certain linear programs in which the contributions of each technology can be traced.

For the case of 0-1 MILP problems, we show that these two ideas lead to the existence of unique shadow prices for 0-1 MILP problems. As in O'Neill et al (2005), we explain the optimal cost of a primal MILP as the value of outputs plus the total "start-up" price of technologies. However, in contrast to the above paper, the prices suggested by our research are guaranteed to be non-negative. We also study the value function of MILP problems with a view towards obtaining accurate shadow prices. In order to do so, we define a new class of two-sided shadow prices. We develop an LP-based methodology for calculating them. While there is a modest computational cost due to the solution of LPs, the shadow price estimates can be expected to be stronger in general. These prices also have the shadow price interpretations similar to those in classic linear programming. In the process of developing this framework, we also provide an interpretation of implied constraints in the form of productivity requirements that must be satisfied for integer programming problems. The paper reporting these results (Sen and Genc [2008]) will be submitted to the Computational Economics special issue of *Operations Research*.

Section 4: Personnel Supported

Suvrajeet Sen (PI) and a graduate student (Yang Yuan) were supported through this grant.

² See http://www.defra.gov.uk/environment/climatechange/research/carboncost/pdf/HowtouseSPC.pdf

Section 5: Publications

- (all papers listed below can be obtained by sending e-mail to the PI at sen.22@osu.edu)
 - S. Sen and T. Genc, Non-negativity of Start-up Prices and Uniqueness of Shadow Prices in a Resource Allocation Model with Indivisibilities, prepared for submission to computational economics special issue of *Operations Research*.
 - S. Sen, Z. Zhou and K. Huang, Enhancements of Two-Stage Stochastic Decomposition, submitted to *Computers and Operations Research*, (abridged version to appear in *Stochastic Programming: The State of the Art*, Volume edited in honor of George B. Dantzig, G. Infanger editor).
 - Y. Yuan and S. Sen, Enhanced cut generation methods for decomposition-based branch-and-cut algorithms for two-stage stochastic mixed-integer programs, submitted to *INFORMS Journal on Computing*.
 - Z. Zhou and S. Sen, Multi-stage Stochastic Decomposition, prepared for submission to *Mathematical Programming*.

Citations to the Literature

- S. Ahmed, M. Tawarmalani, N.V. Sahinidis. 2004. A finte branch and bound algorithm for two-stage stochastic integer programs, *Mathematical Programming*, **100**, 355-377.
- A. Alonso-Ayuso, L.F. Escudero, A. Garin, M.T. Ortuno, G. Perez. 2003. An approach for strategic supply chain planning under uncertainty based on stochastic 0-1 programming, *Journal of Global Optimization*, **26**, 97-124.
- E. Balas, 1979. Disjunctive programming. *Annals of Discrete Mathematics* **5** 3-51.
- T. Gal, 1997. Sensitivity analysis and parametric programming under degeneracy. Appeared in *Advances in sensitivity analysis and parametric programming* edited by Gal and Greenberg. Kluwer Law International, Hague-London-Boston.
- R.E. Gomory, W.J. Baumol. 1960. Integer programming and pricing. *Econometrica* **28**, 521-550.
- L. Ntaimo, S. Sen. 2005. The Million Variable "March" for Stochastic Combinatorial Optimization. *Journal of Global Optimization* **32**.
- R. O'Neill, P. Sotkiewicz, B. Hobbs, M. Rothkoph, W. Stewart. 2005. Efficient market-clearing prices in markets with nonconvexities. *European Journal of Operational Research* **164** 269-285.

- S. Sen, 2005. Algorithms for Stochastic Mixed-Integer Programming Models. *Handbook of Discrete Optimization*, (K. Aardal, G.L. Nemhauser, and R. Weismantel eds.), North-Holland Publishing Co., pp. 515-558.
- S. Sen, H.D. Sherali. 2006. Decomposition with branch-and-cut approaches for two-stage stochastic mixed-integer programming, Mathematical Programming, **106**, 203-223.
- H.D. Sherali, W.P. Adams. 1990. A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems, *SIAM Journal on Discrete Mathematics*, **3**, No. 3, pp. 411-430,
- H.P. Williams, 1996. Duality in mathematics and linear and integer programming. *Journal of Optimization Theory and Applications* **90** 257-278.